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1 INTRODUCTION

1.1 Purpose and Scope

The purpose of this report is to document the software implementation of a Karhunen-
Lo~ve estimator of local surface gravity fields from measurements of airborne gravity gra-
dient fields, and to present and discuss the results of associated numerical experiments.
Extensive derivations and theoretical justifications are avoided. For these the reader is
referred to Bose [2] of which a brief extract covering the principal equations is presented
in Appendix A.

Here we place special emphasis on the validation of the software using synthetic data
from a single dipole gravitational field, which we simulated ourselves. The main body of
experiments were performed on simulated measurements produced at the Naval Surface
WVeapons Center (NSWC) based on multiple layers of random dipoles.

1.2 Problem Statement

Given a measurement of the gravity gradient field collected on a regular grid at an altitude
h above the earth's surface, estimate the gravity vector field at altitude 0. Design and
implement in software an estimator based on the Karhunen-Love algorithm. Validate the
software using controlled data and test it on foreign data supplied by the NSWC. Perform
an error analysis on flhe results.

1.3 Overview of Report

Chapter 2 briefly discusses the technical approach including an overview of the algorithm,
software design, various sets of measurements, and finally error analysis. The theory and
results of validating the software using known single dipole simulations are presented in
Chapter 3. Naval Surface Weapons Center (NSWC) data and related pre-processing are
discussed in Chapter 4. Results of testing the Karhunen-Love estimator for various sets of
measurements are presented in Chapter 5. Observations made from analysing the results
are discussed in Chapter 6. A summary of the research performed, significant conclusions
(rawn and recommendations for future research are outlined in Chapter 7.



2 TECHNICAL APPROACH

2.1 Algorithm Overview

The modeling approach taken here is to exploit the marriage of physical geodesy and
random process theory. Laplace's equation is solved with the unknown mass distribution
below the surface of the earth modelled as a two-dimensional white noise layer representing
the vertical derivative of the disturbance potential to any pre-specified order. This results
in a series solution of the disturbance potential wherein the unknown codecients of the
expansion are forced to be uncorrelated by invoking the Karliunen-Lo've condition. It
can be shown that the disturbance potential covariance obtained from this model is both
non-stationary and non-isotropic.

The six (6) gravity gradient measurements are represented in terms of the Karhunen-
Lo~ve series expansion of the disturbance potentia resulting in six basic functions. These
basis functions are shown to be orthogonal. A linear meav square estimator utilizing
all the gravity gradient measurements simultaneously is obtained in continuous domain
by solving an integral equation involving the estimator t.±ins which are represented by the
same orthogonal basis functions. The discrete implementation of the estimator is facilitated
by exploiting the orthogonality or near-orthogonality of tl%. transformation matrices so
that inverting these matrices be..omes coinputatioually trivial. It tuins out that the near-
orthogonal cosine matrix must be c even order for its inverse to exist, a minor restriction.
The gravity disturbance vector is obtained in a two-dimensiona.- grid which can be denser
than the measurement grid and also at any altitude, including the surface of the earth.
Thus, interpolation and downward continuation are performed automatically. Details of
the mathematical development of the algorithm are discussed in 3ose [2]. A summary
extraction of the relevant equations necessary Lor software development are outlined in
Appendix A.

2.2 Software Overview

A modular software package was constructed -to realize the estimation algorithm and facil-
itate numerical experiments, see Figure 1. The estimation process is -split into two parts:
in module KLE (Karhunen-Lo~ve Estimator) the measured gravity gradient fields are pro-
cessed to produce the K-L (Karliunen-Lo~ve) coefficients &kl of the estimated potential
field; in module SYN (synthesizer) the- coefficients , re used to synthesize the gravity vec-
tor field from the now known coefficients. Incidentally, the SYN module can be used to
simulate random gravitational fields by feeding it coefficients froma- suitably distributed
psuedo-random variable. These. two modules are constructed so that,- in principle at least,
any combination of derivatives of the -potential may be used as the observation, and any
coabm, ltion may be estimated: this includes the-potential T, the gravity vector T, and the

gradient tensor T or any subset of their -components. For computational speed, fast sine

2



and cosine transforms (FST and FCT) are used to compute the discrete sine and cosine
transforms (DST and DCT) in both the KLE and SYN modules. Note that the sine matrix
of our algorithm is identical to the standard DST, whereas our cosine matrix differs from
the standard DCT in that it lacks the first and last rows and columns corresponding to
the region boundaries. This fact does not prevent the use of the FST and FCT to obtain
the speed advantage of the i'st transforms. in order to fully realize this speed advantage,
the number of samples transformed plus one must be - . (odd) product of small primes.

In addition, the.re are modules which prepare the measurements for processing and
which generate plotting files from any of the measured or computed fields. Yet anoth.r
module was created to merge the K-L coefficients from west-east and north-south tracks to
form K-L coefficients representing the best estimate from all of the data, i.e. the S-N ad
W-E grids together. A module was designed to generate single dipole gravitational fields
including the gravity vector and gradients; the controlled data produced by this module
were used to exercise and validate the estimation software duriag its development.

These modules are coded in portable Fortran 77 and are invoked by VAX (tin) DCL
command procedures to do production runs. Internally, all the programs compute using
physically consistent SI/MKS units. Inputs and outputs may be expressed in units con-
venient for the user, e.g. mgal or Eotvos. Any conversions between internal and external
units are performed when- the data are input or output.

dipole

KLE SYN plot

read tape

Figure 1: Software Modules
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2.3 Single Channel Measurements on a Single Grid

Experiments were performed consisting of estimating the gravity vector from each gravity
gradient component. The measurement data were presented on a rectangular grid. File 1
measurements are taken every 1 km on south-north (S-N) tracks which are 5 km apart.
File 2 measurements were taken on west-east (W-E) track.s with the same spacings.

Figures 2 and 3 illustrate rectangular grids with S-N and W-E tracks, respectively. The
sample points used in the estimation are represented by the d- ts. The b6rder, which is
not processed, is represented by the enclosing box. The width and height of the box are
the half periods A and B of the Fourier series representation of the fields. The numbers
of interior sample points horizontally and vertically are given by K and L. The numbers
of samples in the illustrations are not those of the actual data processed.

Figure 2: Rectangular Grid: File 1, S-N Tracks

Figure 3: Rectangular Grid: File 2, W-E Tracks
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2.4 Full Tensor Measurement on a Single Grid

After successful estimation of the gravity vector from single gravity gradient components,
the full gravity gradient tensor was used as a measurement and an estimate successfully
produced. The six components measured were Txx, Ty, Tzz, Txy, Ty , and T Strictly
speaking, any one of the first three of these may be considered redundant in view of
Laplace's equation, but all were still included and all six measurement noises were consid-
ered independent. For simplicity, all of the six measurement noise variances were taken to
be equal to unity. This-experiment was performed with both file 1 and file 2 data, i.e. the
same measurements which were used singly in the previous set of experiments.

2.5 Full Tensor Measurement on a Dual Grid

Files 1 and 2 contain measurements of the same fields over the same survey region, but
one has south-north tracks and the other has east-west tracks. Samples are -taken 1 km
apart and the tracks are 5 km apart. Thus the sampling densities differ in each horizontal
direction. We would like to use both sets of measurements together in obtaining our
estimates, but the basic estimation process requires-an orthgonal sampling grid, which the
union of the two grids is not. Figure 4 illustrates the irregular grid obtained by overlapping
the S-N and W-E tracks of figures 2 and 3.

A direct-approach to extending the method so that the survey data from both files could
be used is to superimpose the two grids and fill in the missing points, i.e. the interiors of
the squares between the tracks, by interpolation. The new, densified grid would then have
samples separated by 1 km in both directions. Unfortunately, the sample count of the new
grid, illustrated by Figure 5, would thus be much larger than either of the two original
grids.

A mu.h-simpler method has been devised whereby the K-L coefficients are estimated
on each of the two grids separately and then combined to form a single K-L coefficient
field from which the estimated gravity-vector is computed. The two fields are rectangular
and overlap. For the overlapping portion, the mean of the two fields is used. For non
overlapping portions of the two fields, whichever field is present is used to form the com-
bined field. Otherwise, zero is used. This is called the union method because all of the two
coefficient fields were used, i.e. the (square) convex-hull of their union. A variation of this
method was also employed, called the intersection method because only the overlap, i.e.
the (square) intersection of the two coefficient fields was used to reconstruct the gravity
vector field estimates. The K-L coefficient field grids are illustrated in Figures 6 and 7.
The two combination methods, the union and intersection, are -illustrated in Figures 8
and 9.
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Figure 4: Dual Grid: Files 1 & 2 Overlapped

Figure 5: Densified Dual Grid

Figure 6: K-L Coefficient Grid: File 1, S-N Tracks
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Figure 7: K-L Coefficient Grid: File 2, W-E Tracks

Figure 8: K-L Coefficient Grid: Combined Files 1 & 2, Union Method

Figure 9: K-L Coefficient Grid: Combined Files 1 & 2, Intersection Method
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2.6 Error Analysis

The primary error analysis tool employed is the three dimensional plot of gravity vector
estimates and truth values, which can be compared visually. A error analysis based on
the plots was undertaken, in which the minima and maxima of the estimate and truth
fields were employed to compute some simple indicators. Both the plots and the indicators
appear in this report.

The minimum and maximum values over the plotted region of the estimates T., TV, T.,
and the truth values T,, Ti,, and T were taken from the graphs and fed into an awk [1]
program. The following indicators were computed and tabulated for each estimate:

max 4 - min4 (1)
max Ti - min (1

ma = max-max Ti + min -min T (2)
bias- 2(2

bias
relativebiasi maxT - min T (3)

where i = x, y, z.
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3 SOFTWARE VALIDATION

3.1 Dipole Simulation

The estimator software was tested with deterministic controlled data generated by a simu-
lation- of the gravity field due to a single gravity dipole. Whether or not such dipoles exist
in nature is, of course, entirely immaterial; they were selected -because of their theoretical
simplicity, the ease of computing them, and the ease of interpreting the results. Formu-
las for a dipole potential and its first and second gradients were derived from elementary
physics and differential calculus. The gravity gradient field was computed at altitude and
the gravity vector field was computed at ground level for comparison. A 104 x 104 sample
grid with 1 km was used. The choice of 104 was dictated by the fact that 1) it is even, which
makes the cosine matrices Equations (97) and (99) invertible and their inverses expressible
in terms of the fast cosine transform, and 2) 104 + 1=105=3 5 . 7 is highly composite, a
property which makes the fast sine and cosine transforms computationally more efficient.
Row spacing is 1 km in both directions. The dipole is horizontal, centered in the region,
and oriented antiparallel to the x = y line, i.e. parallel to the vector (x, y, z) = (-1, -1, 0),
at a depth of 105/8 km. The gravity gradient was computed at a height of 2 kin, and the
gravity vector was computed at a height at 0 km.

3.2 Dipole Math Model

The gravitational potential T due to a point mass m is given by

T = mr- 1  (4)

where r is the distance from the mass point to the observation point. Suppose we have two
point masses +m and -m at distances of r+ and r-, respectively, from the observation
point. Then the potential at the observation point is

T = m(r+' - r- 1)  (5)

If the masses are separated by the vector -b, then linearizing the inverse distance, this
becomes

T9 (6)

where r z r+ ; r- is the norm of the vector r. from the midpoint between the two masses
to the observation point. Defining the mass dipole

ji-m (7)

and letting the distance J ---1 0 while preserving the product in equation (7), equation
(6) becomes exact:

T = .- (8)



To synthesize the dipole field, we need equations for the potential T, the gravity vec-
tor VT and the gravity gradient tensor VVT. Switching to component notation, direct
differientation yields:

T' = ZIk~kr-1  (9)
k

T = OIT = EPtk-ir -  (10)
k

T im = OmT = P-ukOklmr- (11)

k

Note that Oki... is shorthand notation for the partial derivative operator with respect to
the vector components rk, r .... Also, all indices range over the set {x, y, z}. The partial
differientation of powers or r is facilitated by the formula

akr" =nr-2 rk (12)

The partial derivatives are
Okr - 1 =-r- 3rk (13)

8kir- 1 = 3r-5 rkrl - r-38k (14)

Oklmr- 1 = -15r- 7rkrlr, + 3r-5 (rk6m + rl6mk + rm8k1) (15)

where 6 k is the Kronecker delta. In the-dipole-simulation program, where correctness takes
precedence over speed, the partials given by equations (13)-(15) are computed and sub-
stituted into equations (9)-(11) yielding the gravity potential, gravity vector, and gravity
gradient tensor.

For completeness of presentation, we note -that the substitution can be performed sym-
bolically and simplified to obtain the following-formulas for the potential and its derivatives:

T = -r -3  , Pjkrk (16)
k

T = r-3 [3r-2 (E pkrk)rl - 11] (17)

Tm = 3r-5 [(E P krk)(-5r- 2rlrm +-6,.) + rip. + itml] (18)
k

These equations are slightly more general, as well as more compact, than equations (2.1-
4)-(2.1-13) of White [4], which are restricted to vertically oriented dipoles. By setting
P, = My = 0 in equations (16)-(18), the White -equations may be derived, which were
supposedly used to produce the NSWC data described in this report.

3.3 Simulation Results

3.3.1 Gradient Measurements

The simulated gravity gradient measurements are plotted in Figures 13-18.
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3.3.2 Gravity Truth

The simulated true gravity vector components are plotted in Figures 10-12.

3.3.3 Single Channel

The estimated gravity vector components, based on measured single components of the
gravity gradient, are plotted in Figures 19-42. Also plotted are the K-L coefficient fields

3.3.4 Full Tensor

The estimated gravity vector components, based on the measured full gravity gradient
tensor, are plotted in Figures 43-46. Also plotted is the K-L coefficient field &.

3.4 Error Analysis

Visual comparison of the plots shows excellent agreement between the truth values of the
gravity vector and the estimates. Edge effects can be seen clearly in the estimate plots.
Table 1 shows the results of a simple error analysis based on just the maxima and minima
of the true and estimated fields. In this and subsequent tables, the first three rows in
the table represent the truth values themselves, hence the unity gain and zero bias. In
subsequent tables, missing row entries correspond to estimates which exhibited directional
instability (discussed later in the report) so that the minimum and maximum values are
not meaningful.
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Table 1: Single Dipole Gain and Bias.

[meas est [miL max [gain Jbias [relbias

T, T, -9.37e-14 3.11e-13 1 0 0
Tv Ty -9.37e-14 3.11e-13 1 0 0
T, T -3.79e-13 3.79e-13 1 0 0
Ta T -9.76c-14 3.07e-13 0-998 4.31e-15 0.0106
T a, T -1.05c-13 2.92e-13 0.98 1.49e-14 0.0369
Ta, T, -3.66e-13 3.66e-13 0.965 0 0
T,y T, -1.05e-13 2-92e-13 0.98 1.49e-14 0.0369
TU, Tv -9.76e-14 3.07e-13 0.998 4.31e-15 0.0106
Ttl T, -3.66e-13 3.66e-13 0.965 0 0
T,. T, -9-73e-14 3.08e-13 1 3.65e-15 0.00902
Tz z TV -9.73e-14 3.08e-13 1 3.65e-15 0.00902
T, T, -3.79e-13 3.79e-13 0.999- 0- 0
Ty T -9.73e-14 3.06e-13 0.996 4.37e-15 0.0108
T. y Tu -9.73e-14 3.06e-13 0.996 4.38e-15 0.0108
T, T, -3.84e-13 3.84e-13 1.01 -6e-18 -7.91e-06
Ty, T, -9.7e-1,. 3.07e-13 0.998 3.65c-15 -0.009
Ty. T -1.08e-13 3.09e-13 1.03 8.21e-15 0.0203
Ty, T, -3.86e-13 3.86e-13 1.02 -8e-18 -1.05e-05
T. z T, -1.08e-13 3.09e-13 1.03 8.22e-15 0.0203
T, T, -9.7e-14 3.07e-13 0.998 3.64e-15 0.00899
T,, T, -3.86e-13 3.86e-13 1.02 -6e-18 -7.91e-06
full T-- -9.69e-14 3.08e-13 1 3.18e-15 0.00785
full Tv -9.69e-14 3.08e-13 1 3.18e-15 0.00785
full Tz -3.78e-13 3.78e-13 0.996 -2 .01e-18 -2.64e-06
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4 NSWC DATA

4.1 Data Tape

The algorithm was tested on foreign data obtained from the Naval Surface Weapons Center
(NSWC) [3]. The data were synthesized from a multilayer vertical dipole array. The
magnitude of the dipoles was randomly selected in such a way as to produce gravity fields
which are statistically similar to those observed in a certain region of Texas. Details of the
model are found in White [4].

The simulation data were supplied on a magnetic tape which we refer to as "tape 1".
There are three files of data on this tape: the first two contain simulated gravity gradient
measurements such as would be obtained by a survey aircraft. The third contains the
gravity force vector at zero altitude. File 1 data are presented as south-to-north (S-N)
tracks, file 2 date are presented as west-to-east (W-E) tracks, and file 3 data are presented
at -the intersections of the S-N and W-E tracks. The sampling density is greater along
track than across track.

4.2 Grid-Index Mapping

Each file was divided into records, each record constituting a sample point. The x (east)
and y (north) coordinates for the point were given and then either the six components of the
gravity gradient tensor (files 1 and 2) or the three components of the gravity disturbance
vector (file 3).

The range of x and y was -250 km to +250 km. In the direction of the tracks, the
sampling interval was 1 km and in the perpendicular direction it was 5 km. This makes the
full arrays 501 x 101 points (file 1), 101 x 501 points -(file 2) and 101 x 101 points (file 3).

Each tape file was read into the computer and processed. Each physical quantity
represented was placed in a matrix whose elements represented the sampling nodes in the
grid. The value of the coordinate x or y was mapped linearly as appropriate so that the
lowest index value of 1 represented the lowest coordinate value, and the highest index value
represented the highest coordinate value. The matrices were then output sequentially; -this
permitted the estimation software to be structured so that one measurement field at a
time could be processed. This sequential processing-of the measurements greatly reduces
the amount of storage needed to perform estimation from multi-component (vector and
tensor) measurements.

4.3 Cropping of the Data Region

The -number of samples in each direction recorded on -the tape was selected without regard
to the requirements of any particular estimation algorithm. Because the cosine matrix
equations (58)-(59) must have an even number of rows and columns in order to be invert-
ible, we require an even number of samples. Furthermore, in order -to use fast sine and
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cosine transforms efficiently, the number of samples in each direction should be one less
than a highly composite1 (odd) number. Of the 101 available points in the cross-track
direction, we therefore used 98 = 32 . 11 - 1 corresponding to the range -240, -235, ... 1
+245 km. Of the 501 available points in the along track direction, we used 494 = 32.5.11-1

corresponding to the range -246,-245, ... ,+247 km. Table 2 summarizes the grid infor-
mation. The symbols Ax, and Ay denote the sampling intervals along each axis (east and
north), K and L denote the numbers of samples, and A = (K + 1)Ax and B = (L + 1)Ay
denote the region dimensions.

4.4 Data Preprocessing-Transformation

The data were presented in north-east-down (NED) coordinates. They were originally
believed to have been in east-north-up (ENU) coordinates. Because our analysis and
software were based on ENU (really any right-handed frame with the z axis pointing
upward) we applied a transformaion from NED to ENU to all the data. The equations
for this transformation are:

x/ y , zI = y,x,-z (19)
TXT,TZ = T,T ,-T (20)

T'X:,TYU),T~Z = TyY),T :X),TZ (21)

TXY,TYZ,TxZ = TX,-TxZ,-TYZ (22)

where unprimed coordinates are in the old NED frame and the primed coordinates are in
the new ENU frame. Here also T is the disturbing potential and the x, y, and z subscripts
denote partial differientation.

Incidentally, the transformation works equally well in reverse.

IThe product of small primes.

Table 2: Sampling Grids
file no. [Ax (km) Ay (km) A (km) B (km) - I L L
1 1 5 495 405 49498
2 5 1 495 495 98 494
3 5 5 495 495 98 98
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4.5 Gradient Measurements

4.5.1 File 1

The simulated gravity gradient measurements along S-N tracks, recorded on tape 1, file 1,
are plotted in Figures 47-52.

4.5.2 File 2

The simulated gravity gradient measurements along W-E tracks, recorded on tape 1, file 2,
are plotted in Figures 81-86.

4.6 Gravity Truth, File 3

The simulated true gravity vector components, recorded on tape 1, file 3, are plotted in
Figures 123-125.
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5 TEST RESULTS-NSWC DATA

5.1 Single Channel, File 1

The estimated gravity vector components, based on measured single components of the
gravity gradient (tape 1, file 1) measured on S-N tracks, are plotted in Figures 53-76. Also
plotted are the K-L coefficient fields &. Table 3 shows the gain and bias indicators for this
series of estimates.

5.2 Full Tensor, Filt, 1

The estimated gravity vector components, based on the measured full gravity gradient.
tensor (tape 1, file 1) measured on S-N tracks, are plotted in Figures 77-80. Also plotted
is the K-L coefficient field &. Table 3 shows the gain and bias indicators for this series of
estimates.

Table 3: File 1 Gain and Bias.

meas est min max gain [ bias relbias ]

Tx T -38.2 45 1 0 0
Tv Ty -24.5 59.6 1 0 0
T T, -53.4 -64.3 1 0 0

T T -45.1 52.4 1.17 -0.229 -0.00276
Tj, T,7 -37 32.3 0.833 5.76 0.0692
Tvq Ty -44.3 35.9 0.953 21.7 0.258
Ty T_- -66.4 53.7 1.02 11.8 0.1
Tz T, -41.4 40.9 0.989 3.69 0.0444
T,, Ty -47.3 34.9 0.976 23.8 0.283
T., T, -59.8 59.6 1.02 5.56 0.0473
T y T -40.5 40.2 0.971 3.57 0.043
Ty, T, -41.8 40.8 0.993 3.92 0.0472
Ty, Ty -47.3 35.5 0.984 23.4 0.279
Ty, T, -77.1 65.5 1.21 11.3 0.0959
T, T -41.2 46.5 1.05 0.776 0.00933
full T, -40.3 41.4 0.983 2.89 0.0348
full Tv -47 31.9 0 938 25.1 0.298
full T, -56.9159.4 0.989 4.16 0,0354
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5.3 Single Channel, File 2

The estimated gravity vector components, based on measured single components of the
gravity gradient (tape 1, file 2) measured on W-E tracks, are plotted ir Figures 87-110.
Also plotted are the K-L coefficient fields &. Table 4 shows the gain and bias indicators
for this series of estimates.

5.4 Full Tensor, File 2

The -estimated gravity vector components, ba.,:ed on the measured full gravity gradient
tensor (tape 1, file 2) measured on W-E tracks, are plotted in Figures 111-114. Also
plotted is the K-L coefficient field &. Table 4 shows the gain and bias indicators for this
series of estimates.

Table 4: File 2 Gain and Bias.

meas mestmin max [gain [bias [relbias
T. T, -38.2 45 1 0 0
Ty Ty -24.5 59.6 1 0 0
T, T, -53.4 64.3 1 0 0
T T, -40 42.5 0.991 2.18 0.0262
T. T -4 .7 29.8 0.861 24 0.286
T. T, -52.5 62.4 0.977 0.495 0.00421
Ty Ty -52.4 34.8 1.04 26.4- 0.314
T~Z T. -39.3 39.6 0.949 3.26 0.0392
T_ Ty -46.6 32.8 0.943 24.4 0.291
T,, T, -58.7 57.9 0.991 5.85 0.0497
. Tyj -50 37.9 1.04 23.7 0.281
Ty, Ty -47.6 36.2 0.996 23.2 0.276
T-, T, -40.1 43.1 1 1.91 0.023
T Ty -47.6 40.2 1.04 21.3 0.253
T , T, -52.8 72 1.06 -4.14 -0.0352
full T, -39.4 41.4 0.972 2.44 0.0294
full Ty -46 31.2 0.917 24.9 0.296
full T, -55.4 59.3 0.975 3.54 0.0301
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5.5 Full Tensor, Combined Files

5.5.1 Intersection Method

The estimated gravity vector components and K-L coefficients, based on using the inter-
section method, on the measured full gravity gradient tensor from both S-N tracks (tape 1,
file 1) and W-E tracks (tape 1, file 2), are plotted in Figures 115-118. Table 5 shows the
gain and bias indicators for this series of estimates.

Table 5: Files 1 & 2 (intersection method) Gain and Bias.

est Imin Imax (gain Ibias Irelbias

T. T. -38.2 45 1 T0 0
Ty Ty -24.5 59.6 1 0 0
T, T - -53.4 64.3 1 0 0
full T -39.1 40.3 0.955 2.86 0.0344

full Ty -45.2 31.2 0.908 24.6 0.292
full T, -55.1 59.5 0.974 3.27 0.0278

5.5.2 Union Method-

The estimated gravity vector components and K-L coefficients, based on-using the union
method, on the measured full gravity gradient tensor mcasured on both S-N tracks (tape 1,
file 1) and W-E tracks (tape 1, file 2), are plotted in Figures 119-122. Table 6 shows the
gain and bias indicators for this series of estimates.

Table 6: Files 1 & 2 (union method) Gain and Bias.

SmeasIest min I max gain I bias Irelbias

T, T -38.2 45 1 0 0
Ty Ty -24.5 59.6 1 0 0
T2 T, -53.4 64.3 1 0 0
full T, -40.5 41.1 0.982 3.13 0.0376
full T -46.4 31.1 0.921 25.2 0.299
full T -57.6 60 [1 4.26 0.0362
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6 ANALYSIS OF RESULTS

6.1 Directional Instability

An interesting phenomenon which occurred with some single .-hannel measurement esti-
mates is directional instability, i.e. the appearance of a surface which is smooth when
scanned along one horizontal axis but which oscillates wildly when scanned in the direc-
tion of the other horizontal axis. The occurrence of these instabilities has been noted from
the graphs and tabulated for file 1 (S-N tracks) and file 2 (W-E tracks) single channel
estimates. We observe that only the gravity vector component which can be consistently
estimated is the horizontal one at right angles to the tracks, that is in the sparsely sam-
pled direction. Only half the remaining combinations yield smooth, reasonable estimates.
The other half (six combinations for each file) are unstable in the direction parallel to the
tracks, i.e. the direction on the higher sampling density. For file I we can state the rule
that an estimate will be unstable in the y (dense) direction if and only if the measurement
is an x partial derivative and the estimated quantity is not. For file 2 the same rule applies
if only we exchange the x and y in the rule for file 1. Thus a gravity component in either
the densely sampled or vertical direction can not be obtained from a gradient component
in the sparsely sampled direction.

More investigation is required to determine whether the problem of directional instabil-
ity for single channel measurements with unequal sampling intervals in the two horizontal
directions, is fundamental or can be overcome. In any case they do not pose a serious
problem so long as full tensor measurements, which do no exhibit directiona4 instabiiity,
are available. Even if the full tensor is not available, the method is general enough to
accomodate any subset of the six (five independent) gradient tensor components, which
presumably would be sufficient to overcome the instability.

6.2 Gain and Bias

In examining the tabulated estimator gain and bias errors, we observe that single axis gains
ranged from a decrease of 17% to an increase of 21% for file 1 and from a decrease of 14%
to an increase of 6% for file 1. Relative biases vary from -3% to +30% for file 1 and from
-4% to +31% for file 2. Gain and bias errors based on full tensor gradient measurements
show much less spread, however, than the single axis errors: the gains range from 6% less
than unity (file 2) to 1% less than -unity (file 1). Relative biases range from +3% to +30%
(both files). Interestingly, estimates-of T. show a consistent relative bias of approximately
30%. Results are similar for the combined estimates using-both the intersection and union
methods, although the latter seems slightly better on gain and the former slightly better
on relative bias.

The slight attenuation typical of most of the estimates is fairly easily explained by
noting that the estimator is a low pass filter. This is because the estimator knows that the
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measurement noise is a wide band signal. By filtering out the higher spatial frequencies.
the estimator will dull the sharp peaks which more than likely include the minima and
maxima, resulting in a smaller peak-to-peak magnitude and hence a less than unity gain
by our definition.

6.3 Boundary and Edge Effects

Likely error sources are b td.ary and edge effects. By the former we mean errors resulting
from assuming boundary conditions which do not in fact obtain. Boundary effects- which
are in evidence only near the edges of the region are known as edge effects. The potential
model of a pure sine Fou,-, r series in x and y given by

T(x, y, z) - ak sin(akx) sin(bly) exp(-cktz) (23)
k=1 1=1

where
ak = k=r/A, bt = l r/B, ckl = a + b (24)

implies certain boundary conditions: 1) T is periodic with period (2A, 2B), i.e.

T(x, y,z) = T(x + 2A, y, z) = T(x, y + 2B, z) (25)

and 2) T is odd symmetric in x and y, i.e.

T(x,y,z) = -T(-x,y,z) = -T(x,-y,z) (26)

These follow directly from the properties of the sine function and are readily verifiable-from
the representation of T(x, y, z) given by equation (23). A corollary to these conditions is
that T is odd symmetric about any of the survey region boundaries:

T(A +x,y,z) = -T(A-x,y,z), T(x,B +y,z) = -. T(.,B- y,z) (27)

It follows that the mass distribution which induces T must satisfy the same conditions as
the potential, i.e. each mass particle or feature will have a two-dihensional infinite series
of reflective and periodic images of itself, some of which are sign reversed.

To the extent that the real mass distribution meets these conditions, the estimator
will produce correct results. Generally, -however, the mass distribution will not meet these
symmetry and periodicity conditions. In such cases, good estimates may still be-possible
away from the boundaries. The sources of error may be masses outside the region, which
are necessarily not modeled, and the reflective and periodic images locatcd outs-ic the
region which aie unavoidably anderroneously modeled. Since the potential dueto -amass
particle declines with distance from the observer, estimates can be expected to -be good
near the surface and away from the-edges, provided there are not unduly significant -nms.,
distributions near or beyond the-edges or at great depth compared to A and B.
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Let us remark that the symmetry condition can be done away with by switching to a
potential representation which includes the cosine-cosine as well a mixed sine and cosine
terms of the Fourier series

T(x,y,z) = [ (28)
00 00 cekl sin(akX) sin@bly)

k=l/1=1
00 00

+ ) Z ac sin(akx) cos(bly)
k=l 1=0
00 00

+ F E C4 cos(akX) sin(by)
k=O 1=1
00 00

+ OW c4cos(akX) cos(by)
k=O 1=0

I exp(-ckIz)

or the equivalent complex Fourier series. This alternative approach requires data to be
expanded to a full period, i.e. a rectangle of dimensions 2A x 2B. It has the advantage of
being able to handle non-zero potentials on the boundary.

An alternative approach to dealing with non-zero boundary potentials is to fit a simple
harmonic field to the region boundaries and then apply the existing estimation algorithm to
estimating the residual field, which will necessarily meet the zero boundary -value condition.
The final field estimate is the sum of the simple field which fits the boundaries and the
estimated residual field. Such a-fit must be done using measurements of the gravity gradient
on the-region boundary. Currently these measurements are not utilized in our algorithm.
A model for the boundary-fitting harmonic field -is obtained from the full Fourier series
equation (28) by restricting the range of the cosine summation indices to a maximum of 1.

T(x,y,z) = [ (29)
00 CO

_ Z_ c4 sin(akx) sin(by)
k=l 1=1
00 1

+ , esc1 sin(akx) cos(bly)
k=1 1=0

1 00

+ Z l, o cos(akx) sin(bly)
k=O 1=1

11
+ ce'k4 cos(akX)co(by)

k=O 1=0
exp(-cLjz)

The -details of estimating the boundary coefficients are beyond the scope of the present
research. The purpose of introducing them here is to demonstrate a model for the errors

21



incurred when the boundary values of the potential, being observed through the gradients,

are non-zero.
The Fourier coefficients in equation (29) iune obtained sequentially. The ac. ar Ioter-

mined first so that the four cosine-cosine tcrns produce a harmonic field which fits the

corners of the potential. The residual field is computed by subtracting the cosine-cosine
terms from the total field T(x, y, z) leaving be a harmonic field with zero potential on the

four corners. Then each set of mixed coefficients is computed to fit the interiors of one

parallel set of sides. A new residual- field is computed which has homogenous boundary
conditions and is thus representable in terms of sine-sine terms only. But we have already

solved the problem of estimating the sine-sine coefficients by the Karhunen-Lo~ve method.
The details of this multistep estimation process based on equation (29) are beyond the
scope of this research. Note, however, that besides providing a means of extending the
K-L method to handle non-homogenous problems, it gives one a model for determining
what types of errors may be present when the homogenous K-L method is applied to
non-homogenous data as was done in this study.

By visualizing several of these boundary harmonics, the reader can imagine what types
of errors may be present. Some examples:

* constant in both x and y directions

* cosine in x, constant in y

* cosine in x and y

* arbitrary C2 -curve in x vanishing at the endpoints, constant in y

* arbitrary C2 -curve in y vanishing at the endpoints, constant in x

By this analysis we demonstrate a rather large family of harmonic surfaces from which to

select one which corrects for the boundary values.
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7 SUMMARY, CONCLUSIONS, RECOMMENDA-

TIONS

7.1 Summary

The Karhunen-Love algorithm was implemented, validated on controlled data, and tested
on foreign data. Successful recovery of the unknown gravity field was accomplished in
most cases, the only exceptions being certain single-component measurement cases where
the sampling interval is different in the two horizontal directions. Plots of the measured
gravity gradients and of the true and estimated gravity vectors have been presented. A
capability to simulate dipole fields was developed and applied to produce controlled data
based on a single horizontal gravity dipole; the single dipole data were used for software
validation.

Error analyses were based- on qualitative comparison of the plots and on quantitative
comparison of indicators computed from the minima and maxima of the plotted gravity
vector fields. Since a method designed for homogeneous potential fields, i.e. zero-valued on
the rectangular survey region boundaries, was being applied to data derived from a non-
homogenous potential, the estimate regions were cropped on the hypothesis that boundary
and edge effect errors would be mostly restricted to near the rectangle boundaries. This
hypothesis was at least partially justified by the results. Ways to extend the method to
deal properly with the non-homogenous boundary conditions were suggested.

In the process of implementing the K-L algorithm in software, several technical advances
were made. These include 1) an arrangement of equations which minimizes computer stor-
age of arrays and permits (field) measurements to be made sequentially; 2) the application
of fast sine and cosine transforms to speed computation dramatically, especially for large
sample grids.

7.2 Conclusions

We conclude that the Karhunen-Love method of gravity- estimation from gravity gradient
measurements as implemented-for this study is a viable estimation technique. The present
experiments did not attempt to account for non-homogenous boundary values, which lim-
ited the region of acceptable -estimates to center of the measurement region, i.e. away
from the boundaries. It is believed that better performance over the whole region will
be attained when the method- is enhanced in the ways recommended. Still the method
worked well within its present -limitations. Because of its excellent results, computational
economy, and suitability for small computers, its-eventual wide adoption is suggested.
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7.3 Recommendations

The principal recommendation for further work is that the method be extended to account
for non-homogeneous boundary conditions. Two approaches have been pointed out: first,
adding a sufficient number of cosine and mixed sine-cosine harmonics to the disturbing
potential model and estimating the additional coefficients from the boundary data alone;
and alternatively, by adding the -full complement of cosine and mixed sine-cosine -terms
and expanding the data region to a full period in the x and y directions. A variation oil
the latter method would be to use a complex Fourier series instead of the real sine-cosine
series to -represent the potential. Additional tests with simulated measurement noise are
recommended.

We note that the algorithm is not limited to simply obtaining estimates of the gravity
vector from measurements of the gradient. With minimal modification to the software,
combinations of measurements of the potential derivates of any or different orders cal be
processed and likewise derivatives of any order can be-estimated.

The mathematical model for the method tested here can be extended in potentially
useful ways. For example, instead- of representing the source of -the disturbing potential by
a single white noise layer, multiple layers should be considered. These would be placed at
various depths as in the model used to produce the NSWC data.
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A Algorithm Summary

A.1 Local Region

A local region of interest is represented as such, where x and y coordinates are on the
surface of the earth and the z coordinate is vertical above the surface of the earth. The
local region of interest is specified by the spatial domain D given as

D(x,y) = {x,y; 0 5 x < A, 0 <. y :_ B} (30)

where

A - length of the survey region
B - width of the survey region

The survey measurements are taken at an altitude H above the surface of the earth.

A.2 Sensor Signal Model

The gradiometer sensor signal S(x, y, z) has six (6) components: three (3) inline signals
and three crossline signals. The six (6) signals of the gradiometer are given below

S(x,,z) = T (31)
aX2

2(XY, Z) = 8 2 T(32)

S3(x,Y,z) = 2oT (33)

z2T

S5(x,y,z) = a22 (35)

S6(X,y,Z) = a9aT (36)

A.3 Measurement Model

The measurement Z(x, y) at z = H of the gradiometer signal S(x, y) is contaminated with
an additive noise V(x, y) such that

Z(x,y) = S(x,y) + V(x,y) (37)

Thc autocorrelation function of the additive noise is assumed to be a diagonal matrix such
that

Rvv (xI,yI; X2 ,y2 ) = {V(X1 ,yI)VT(X 2 ,y2 )} (38)
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2? 0 0 0 0 0
0 0 0 0 0
0 0 a2~ 0 0 0
o 0 0 3 a 0 0 6(XI-X 2 )8(YI-Y 2 ) (39)
0 0 0 0 as2 0

0 0 0 0 0 ,2

The vector signal S(x, y) and measurement noise V(x, y) axe assumed to be uncorrelated,
i.e.

E{S(XIY)V(X 2,Y2)1 = fV(X1,yi)ST(X 2,Y2)} = 0 (40)

A.4 Measurement Grid

In order to obtain the vector signal estimates for all the spatial points of interest a definition
of the two-dimensional grid is necessary. For the present development the two-dimensional
grid of data points is-defined to be equally spaced in each direction with K data points in
the x - direction and- L data points in the y - direction. With Ax- and Ay the grid spacing
in -the x and y directions respectively the spatial domain D is given as

(K + 1)Ax = A I < k < K (41)

(L + 1)Ay = B 1 < I < L (42)

A.5 Measurement Matrices

ZI(X1) Yl) ZI(XlI Y2)".." ZI(Xl,Yr,)

[Z1] Z- (x 2,yI) (43)
KxL

Z,(xx,y,) ... ... ZI(XK,yL)

Z2(Xi,yI) Z2(XI,y 2) ... Z2(Xl,yL)

[Z2] - Z 2(x2,y) (44)
KxL

Lz2(,XK),Y,) ... ... Z2(X, ,YL)

Za(xI,Y) Z3(xI,Y2)... Z3(XI,,YL)

[Z31= Z3(,V2,y1 ) (4)

Z3(: K,-, Y,) ... ... ( ,-, yl,) J

26



[Z4(Xj,Yi) Z4 (XI,Y 2) .. Z4(X1,YL,)

[Z4] Z4(X2,YI) (46)
KxL b

LZ4(XAKy)I . . 4(K L

Z5(XI,yI) ZS(XIY 2 )... ZS(X,yL)

[Z5] Z5(X2,YI) (47)
Xx L J

Z5(xK) ..... Z(X, ,YL)J
Zs6(X,,yi) z6(=,,u) Z6(=,,L)

[Z6]- z(x,yj) Z I (48)
KxL

Z6(XK,) Y) Z6(X., Yb J

A.6 Transformed Measurements

[ iI _ AB [SAX]T[Z,][SAY] (49)

KxL (K + 1)(L-+ 1) Kx" KxL LxL

[2 1 = AB [SAXI T [Z2][SAY] (50)
KxL (K + 1)(L + 1) KxK KxL LxL

[Z] AB [SAXIT[Z3 ][SAY] (51)

KxL (K+1)(L+1) KxK KXL LxL

[241 AB _ [I + 2C][CAX]T [Z4][CAY][I + 2C] (52)
KXL (K + 1)(L + 1)- KxK KXK KXL LxL LxL

[ _5] = AB [SAX]T[Z5][CAY][I + 2C] (53)
KxL (K + 1)(L + 1) KxK KxL LxL LxL

[26] _ AB [I + 2C][CAX]T [Z6][SAY] (54)
KxL (K + 1)(L + 1) KxK KxK KxL LxL

where K and L are even, [I] is the K x K or L x L identity matrix, and [C] is a K x K or
L x L Toeplitz Circulant matrix of alternating one's- (1) and zeroes (0), a 4 x 4 example
of which is

[c]= 0 1- (55)

O1 0 10 0
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The transformation matrices are given by

AX 1 < i< K
[SAX(i,ij)] = sin 7r(i x <) j < K (56)

[SAY(i,)]= sin r(i x j) lji<
L~1 < j < L

AY 1 < i<L

[CAy(i, j)T = cos 7(i x j)A 1 <. i L (59)

A.7 Karhunen-Loe've Coefficient Estimates

[&,.] _ firnni0 1(m, n) 0 Ymni + /n2 0 2(m, n) 0 mn2

KxL KxL KxL KxL KxL KxL KxL

+f#mv3 0-Z 3(mn, n) 0 IYNO + 91.n4 0 24(m, n) 0 7m.i4-
KxL KxL KxL KxL KxL A'xL

+IOmnS 0 2 5(m, n) 0 IYmnS + IPrn6 0 2 6(m, n) 0 -1m.6- (60)
A'xL KxL KxL KxL KxL KxL

where 09 is point-by-point -matrix multiplication and not row-by-column -matrix multipli-
cation and,

flmni 3= Anl 1J90" (61)

and- =j 4m F11in ~ok

2

Amn = 0(62)
inn-

and

-292
'Ymn2 = V &_ b CnntIH+Dl (63)

7mn2 2 b2 ecmnH+D 64
^Imn3 = 22_ Cn (65)

7Ymn4 = 2 abecmn~lH+Dl (66)

^tn-= -2 sgn(H + D)bnCnn e-CmnIl+DI (67)

7fmn6 = -2sgn(H + D) am cm~en-~l (6S)
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A.8 Interpolation Grid

The signal estimates are a'ailable at any altitude h. The estimates of the Karhunen-Lo~ve
coefficients &mfl, are on the measurement grid K x L. For the signal estimates, a finer
interpolated grid can be used that is defined by

(P + 1)EX = A EX < AX (69)

(Q + 1)EY = B EY < AY (70)

A.9 Signal Estimates

Disturbance Potential Estimate:

[] = [SEX]([&mn] 0 [m.,])[SEY]T  (71)
PxQ PxK KxL KxL LxQ

Gravity Vector Estimates:

[F] = [CEX([o.] 0 [0 ,i)[s YIT (72)
PxQ PxK KxL KxL LxQ[]= [srxI([ ] ® [6mn3])[cY]T  (73)

PxQ PxK KxL KxL LxQ

[F] = [SEx]([&..] [0m4)[Sy] T (ry(73)

PxQ PxK KxL KxL LxQ

Gravity Gradient Estimates:

W-] = ISEX]([&m.] 0 [8. 5 )[SEY]T  (75)

PxQ PxK KxL KxL LxQ

[52] = [SpX]([&m,. 0 [9,nn6 )[S Y]T  (76)
-D =O [SX]([p..] 0 [O.5])[SrY]T  (75)

PxQ PxK KxL KxL LxQ

[ T] [S= X]([&.m.] 0 [0,.6])[SEY] T

PxQ PxK KxL KxL LxQ

T] = [EX&mnI 0 [On 8 CY]T  (78)

PxQ -IxJ( KxL JKxL hxQ
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[ Y,-] -SX(&n [m 9 )CY(79)
P x.Q PxK KxL KxL LxQ

= [OCi]1SJ] (80)
PxQ PxK KxL KxL LxQ

where 0has- been defined earlier as point-by-point matrix multiplication and

EX 1<5i < P
tSEJX(i, j)] sin 7*~ x j)-~- 1< K(1

EY- 1 <ij<LK(1

[S~y(i,j)]T =sin r(i x j)-E- 1 :<~ L (82)

[CEX(i, j)] =Cos w(i X j)X 1:! <P (83)
A 1 :5j < K

[CIJy(i, j)]T =O coIr(i X j El 1 < i<L

and,2 -clhD

0..1 = 2 -~jhD (85)-

0..2 = 2 ' m-mj+j(86)

Omn3 = 2 bnectnnlh+DI (87)

Omn4 =-2 sg~ )Cnn-m h (88)
-

OmnS = -a2 CmhDj(89)

OmnS 7A n-CnhD (90)

Omn7 = A 2 mne(1

2  ecmlh+DI (1
0 .n8 Ma m b nm D -(92)

0m.9 = -2 sgn(h + D) bn .. cmlh+DI -(93)

OmnlO- = -2sgn(h + D) anCe-Ctnnh+Dj (94)

(95)
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B Software Implementation

B.1 Estimator Module

The two software modules KLE (Karhunen-Loeve estimator) and SYN (synthesizer) form
the two stages of the estimation process. The estimator equations oi the previous section
have been modified in form only, not in substance, and adapted for programming.

In the first stage of the estimator, KLE, the ith measurement field is sampled on the
rectangular grid. It is transformed on the left and right by the sine and/or cosine matrix
given by

irkl
2sin K- k, = 1,...,K (96)

K+1

or
orkl

2sin L+- k, I = 1 ,L (98)

or
2cosL l, k,l = 1,...,L (99)

depending upon the matrix type as given in table 7 and the number f grid samples in the

Table 7: Signal dependent functions
ith signal ( 7kii left I right

T [2 sine [sine
T 2 ak cosine sine

TK 2ba sine cosine
Tz - 2 Ckl sine sine
T.X -2a2 sine sine
T__ -2bi sine sine

T 2ck1  sine sine
T _ 2akb cosine cosine
TV. -2bicki sine cosine
T_ _ - 2 akcki cosine sine

interior of the survey region, K in the x direction and L in the-y direction. The multipler of
2 is for compatibility with the FST and FCT functions in the Swarztrauber FFT software
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package FFTPACK. If the table entry is "cosine", then the cosine transform is followed by
an application of the matrix

61j + 21i- j + 112, i,j = 1,...,K (100)

or
6ij + 21i -j + 112, i,j = 1,...,L (101)

Note that JkJ2 denotes k modulo 2, i.e. 1 for k odd and 0 for k even and b is the Kronecker
delta. The transformed ith measurement field is denoted by Zkli.

The following equations combine the transformed measurement fields to yield the K-L
coefficients akL.

Ck = Fa + b2, ak = 7rk/A, bt = rl/B (102)

tki = exp (-ck,. (h + D))vA'-B (103)

kl =a0 2/c2k (104)
k =AVt " (t41-Ali) (105)

[1 + A+ Ak1 Ej(tk jktj)2/a ]

SAB/4liZki (106)=(K + 1)(L + 1) Fkt, l6

The main computational loop in the program increments the index i so that measure-
ments are processed sequentially. Only the-selected measurements are processed. The K-L
coefficient field aki is stored in a disk file.

B.2 Synthesizer Module

The SYN module reads the K-L coefficient-field aki, recomputes tk~l and Ykli and computes
the field

Zkli =ItklikOtkf/4 (107)

where now i represents the-quantity to be estimated. The zk' / matrix for the given i is -then
multiplied on the left and right by the appropriate sine and/or cosine matrix to produce
the- estimate of the ith signal.

B.3 Matrix Formulation

It is -uscful to look at tEi computational process in high level matrix notation. In fact, the
computations can be summarized in just two equations:

A = BB 0 {L'jZjR'i} (10S)
i
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and

= Li J ri} R, (109)

In equation (108) the ith measurement field is transformed on the left and the right by
L'i and R.' which are the sine or cosine matrix of Equations (96)-(99) multiplied by the
matrix of Equations (100)-(101). This puts the measurement field into the K-L domain
where it is multiplied by the weighting matrix Bi. The elements of Bi, which may be
inferred from Equation (106) and its predecessors, are given by

[Bik = AB4 / i (110)

= + 1)(L +

The "D" product is simply the element by element product given by

A 0 B = C 4 aklbkl-Ck1 (111)

The summation over the measurement index i yields the field of K-L coefficients. In
-Equation (109) we obtain an estimate of the ith signal field. The K-L coefficient matrix
is multiplied element by-element by another weighting matrix ri, which may be-inferred
from- Equation (107) and its predecessors. -Specifically, the elements of ri are given by

[ri]kl' tk'kUi _(112)
4

The- result is left and- right multiplied by Li and Rj, respectively, each of which is either
the sine or cosine matrix of Equations (96)-(99).

It is the power of the Karhunen-Logve method that the -estimation equations can be
cast in such a simple form as Equations (108) and (109), in particular the fact that the
elements of the K-L coefficient matrix are uncorrelated.
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